Supplemental Information

Rewards for Ratification:

Payoffs for Participating in the International Human Rights Regime?

Richard Nielsen Assistant Professor, Department of Political Science Massachusetts Institute of Technology rnielsen@mit.edu

Beth A. Simmons Clarence Dillon Professor of International Affairs Government Department, Harvard University bsimmons@wcfia.harvard.edu

Draft date: 18 January, 2014

Full regression tables for tangible rewards results reported in the text

The following tables show the full regression tables for each of the models presented in Tables 1, 2, 3, and 4. We did not present full tables in the text because the coefficients on the control variables do not generally have a causal interpretation.

Foreign Aid

Outcome Variable	Foreign Aid/capita					
	Model 1	Model 2	Model 3	Model 4		
Treaty	ICCPR	OP 1	CAT	Art. 22		
Effect of ratification	1.255	1.132	1.245	-0.662		
	(0.902)	(0.860)	(0.821)	(0.787)		
Physical integrity _{<i>t</i>-1}	-0.198	-0.501	-0.215	-0.876		
	(0.340)	(0.278)	(0.248)	(0.566)		
Polity t-1	0.133	-0.113	-0.0566	-0.132		
	(0.131)	(0.146)	(0.0685)	(0.111)		
Aid p.c. <i>t-1</i>	2.171**	0.525	1.637**	4.841**		
	(0.674)	(1.051)	(0.531)	(0.974)		
Global aid flows <i>t-1</i>	0.0516	0.0546	-0.00504	0.0515		
	(0.0463)	(0.0438)	(0.0437)	(0.0469)		
ln GDP p.c. <i>t-1</i>	-8.233	-11.17*	-16.77*	-14.93		
-	(6.122)	(5.504)	(7.856)	(12.69)		
In Population t-1	95.58	3.463	-23.85	-173.3*		
-	(85.20)	(9.188)	(55.65)	(87.58)		
In Trade <i>t-1</i>	0.224*	0.255	0.216	0.398		
	(0.101)	(0.139)	(0.122)	(0.214)		
Alliance t-1	2.912	1.080	3.580	-2.658		
	(4.923)	(1.530)	(3.833)	(1.432)		
War t_{t-1}	-0.0968	1.989	1.182	2.505		
	(1.500)	(1.968)	(1.280)	(1.488)		
Former colony	7.651*	11.80	17.83**	8.389		
•	(3.626)	(6.732)	(6.372)	(4.605)		
Socialist	2.458	0.121	-0.668	0.889		
	(1.626)	(1.397)	(1.735)	(1.414)		
Cold War	1.472	1.475	1.478	0.844		
	(0.989)	(1.584)	(0.992)	(1.092)		
Cold War \times Socialist	6.843	3.929	6.360*	-0.175		
	(3.666)	(2.185)	(3.222)	(1.617)		
Sub-Saharan Africa	-0.121	-0.183	0.182	-3.188		
	(1.987)	(0.924)	(1.446)	(2.372)		
Latin America	1.149	1.389	2.033	1.258		
	(2.259)	(1.256)	(2.622)	(1.876)		
Middle East/North Africa	1 332	1 437	-0.968	-2.734		
	(3.790)	(2, 190)	(3.780)	(2.366)		
East Asia/Pacific	-0.0939	0 139	0.913	-1 710		
	(2.801)	(1.116)	(1.937)	(1313)		
Physical integrity	0 441	0 200	0 504	-0.236		
ingoiour integrity t-2	(0.360)	(0.258)	(0.204)	(0 357)		
Physical integrity	-0 171	1 031*	0714	-0 0992		
i nysicai incegnity t-3	(0.403)	(0.481)	(0.583)	(0.288)		
Physical integrity	-0.410	-0 673	-0 924	0.443		
i nysicai incegnity t-4	-0.410	-0.075	-0.74+	0.445		

	(0.311)	(0.469)	(0.490)	(0.479)
Physical integrity t_{-5}	0.345	-0.535	0.804*	-0.695
	(0.258)	(0.379)	(0.338)	(0.676)
Aid p.c. t^{-2}	0.564**	2.155**	0.940	-0.501
	(0.103)	(0.647)	(0.556)	(0.572)
Aid p.c. t_{-3}	0.316	0.344	0.478*	0.964**
1	(0.191)	(0.266)	(0.236)	(0.276)
Aid p.c. 14	0.576*	-0.0573	0.574	0.178
<u>I</u>	(0.248)	(0.248)	(0.352)	(0.494)
Aid p.c. +5	0.770*	1.601*	0.842	-0.624
I I I I I I I I I I	(0.302)	(0.721)	(0.800)	(0.466)
ln GDP p.c. _t ₂	-1.140	18.58*	18.40	15.25
I · · · <i>t</i> -2	(12.77)	(8.560)	(10.89)	(17.81)
In GDP p.c. +2	18.56	-0.210	-35.66	-4.694
	(13.67)	(6.352)	(25.57)	(12.75)
In GDP p.c.	9.276	2.922	55.94	8.292
III 021 Prov 1-4	(7.883)	(9.630)	(37,33)	(13, 30)
In GDP n C	-19 95*	-9 432	-23 53	-7 291
	(8,016)	(9,108)	(13,30)	(6.073)
In Population	-303 7	23 58	83.83	190.4
In Population 1-2	(295.2)	(66.90)	(108.9)	(115.6)
In Population	328.5	70 74	-189.1	-56 59
In Population t-3	(452.6)	(111.4)	(178.3)	(53.74)
In Population	-59.68	-133.8	277.9	238 5**
In Population 1-4	(266.2)	(13/18)	(247.4)	(79.80)
In Population	-61.31	35 71	-1/19 5	_100 /**
In Topulation t-5	(75.00)	(66.10)	(135.4)	(65.46)
In Trade	0.340*	0.00211	0.186	0.408
	(0.150)	(0.123)	(0.157)	(0.403)
In Trade	0.159)	0.221	(0.137)	(0.207)
III TTade t-3	(0.110)	(0.128)	(0.180)	(0.243)
In Trada	(0.119)	(0.128)	(0.180)	(0.241)
III IIade $t-4$	-0.0703	-0.285	(0.0280)	(0.273)
In Trada	(0.148)	(0.100)	(0.203)	(0.282)
In Trade $t-5$	-0.104	-0.114	-0.0491	0.0510
Wor	(0.103)	(0.1000)	(0.139)	(0.100)
vv al t-2	(1.146)	(1.081)	(1.830)	(1.070)
Wor	(1.140)	(1.901)	(1.650)	(1.070)
vv al t-3	(2,323)	(1.223)	(3.105)	-1.309
Wor	(2.323)	(1.556)	(3.103)	(0.910)
vv al _{t-4}	-1.379	(1.4/1)	-0.290	-4.400°
Wor	(1.799)	(1.542)	(2.040)	(2.136)
vv al _{t-5}	-3.033	-1.000	-5.529^{+1}	(1.721)
Constant	(2.009)	(1.727)	(1.237)	(1.721) 25.16*
Constant	(8,200)	-0.341	4.100	(10,00)
	(0.299)	(9.223)	(0./80)	(10.90)
N7 1.1 1	505	450	022	410
IN treated dyads	595 505	455	923	418
IN non-treated dyads	393 1096 2010	433	923	418
r ears	1986-2010	1986-2010	1986-2010	1986-2010
K-squared	0.55	0.89	0.55	0.45
Matching	Yes	Yes	Yes	Yes

Table A.1: Linear regression of aid flows per capita on treaty ratification with dyad random effects. The unit of observation is the (non-)ratification episode dyad, with ratification occurring in year *t*, all covariates measured in *t*-1, and most time-varying covariates measured in the years *t*-1, *t*-2, *t*-3, *t*-4, and *t*-5. The outcome variable is total receipts of foreign aid per capita in years *t* through t+5. The sample is limited to dyads in which the donor has ratified the relevant treaty.

Outcome Variable	Preferential Trade Agreements between Dyads					
	Model 5	Model 6	Model 7	Model 8		
Treaty	ICCPR	Opt 1	Cat	Art 22		
		^				
Effect of ratification	0.443**	0.0746	0.0954	0.564**		
	(0.112)	(0.127)	(0.115)	(0.188)		
Physical integrity _{t-1}	-0.0362	-0.186**	-0.0465*	-0.153**		
	(0.0225)	(0.0289)	(0.0228)	(0.0507)		
Polity _{t-1}	-0.0533*	-0.0134	-0.0704*	0.0598		
• • •	(0.0208)	(0.0281)	(0.0318)	(0.0685)		
Veto points	0.124	0.459	0.147	-0.110		
1 I	(0.373)	(0.480)	(0.360)	(0.794)		
Existing dyadic PTA t-1	0.236	-0.975*	0.774*	-1.927		
	(0.408)	(0.465)	(0.302)	(1.240)		
ln Trade _{t-1}	0.00862	-0.0551	0.0429	0.204**		
	(0.0274)	(0.0374)	(0.0299)	(0.0716)		
$\ln \text{GDP}_{t-1}$	1.814**	1.588	3.278**	-0.441		
	(0.557)	(0.951)	(0.831)	(2.352)		
GDP growth t_{r}	-0.566	0.0578	-0.0579	-0.250		
	(0.522)	(0.105)	(0.0547)	(0.200)		
Armed conflict _{$t-1$}	0.986	collinear	collinear	collinear		
	(2.061)					
Alliance _{tal}	0.209	0.385	0.955**	1.651**		
	(0.197)	(0.204)	(0.169)	(0.325)		
Contiguous t-1	-0.479	-0.939**	-0.624*	-1.051**		
0	(0.267)	(0.330)	(0.284)	(0.370)		
Distance t_{t-1}	-1.295**	-1.420**	-1.213**	-0.849**		
	(0.0913)	(0.119)	(0.0954)	(0.165)		
Hegemony _{t-1}	-121.6**	-139.0**	-187.6**	-21.52		
	(20.96)	(22.85)	(21.58)	(25.30)		
Post-Cold War (1989)	1.532**	0.489**	0.0536	1.810**		
	(0.149)	(0.155)	(0.194)	(0.286)		
GDP ratio t-1	0.189	-0.405	-1.034**	2.506*		
	(0.416)	(0.523)	(0.350)	(1.097)		
% dyads ratifying PTA t-1	-38.79**	-34.76**	13.04*	-17.07		
	(5.904)	(7.579)	(5.542)	(14.12)		
GATT/WTO _{t-1}	0.620**	0.501**	0.502**	1.425**		
	(0.119)	(0.147)	(0.123)	(0.265)		
Former colony	collinear	0.271	collinear	collinear		
		(1.115)				
Polity _{t-2}	-0.0339	-0.0675	-0.00767	0.121		
	(0.0279)	(0.0391)	(0.0354)	(0.153)		
Polity _{t-3}	0.00129	0.108**	0.0196	-0.188		
	(0.0326)	(0.0352)	(0.0334)	(0.152)		
Polity _{t-4}	0.0598	-0.0479	-0.0129	-0.0239		
	(0.0335)	(0.0314)	(0.0286)	(0.142)		
Polity _{t-5}	-0.0464	-0.0153	-0.00793	-0.0240		
	(0.0263)	(0.0212)	(0.0201)	(0.108)		
Existing dyadic PTA _{t-2}	-0.0304	0.491	0.00601	3.861*		
	(0.502)	(0.540)	(0.412)	(1.519)		
Existing dyadic PTA _{t-3}	-0.808	-0.542	-0.812	-1.657		
	(0.601)	(0.817)	(0.442)	(1.063)		
Existing dyadic PTA _{t-4}	0.525	-0.212	-0.333	-0.340		

Preferential Trade Agreements (PTAs)

	(0.574)	(0.867)	(0.469)	(1.009)
Existing dyadic PTA _{t-5}	1.020*	1.086	0.394	-0.914
	(0.418)	(0.567)	(0.419)	(0.594)
ln Trade _{t-2}	0.0322	-0.0168	0.00124	-0.00567
	(0.0314)	(0.0426)	(0.0317)	(0.0931)
ln Trade _{t-3}	-0.0318	-0.0702*	-0.00958	-0.0745
	(0.0325)	(0.0357)	(0.0302)	(0.0773)
$\ln \text{Trade}_{t-4}$	0.0285	0.0979*	-0.0184	-0.0281
	(0.0335)	(0.0394)	(0.0301)	(0.0663)
ln Trade _{t-5}	-0.0530	0.0232	-0.0260	-0.0520
	(0.0306)	(0.0357)	(0.0258)	(0.0755)
ln GDP _{t-2}	-1.027	-1.018	-2.515*	8.421
	(0.846)	(1.460)	(1.246)	(4.751)
ln GDP _{t-3}	-0.214	2.640	0.201	-11.21
	(0.750)	(1.471)	(1.145)	(5.947)
$\ln \text{GDP}_{t-4}$	0.411	-1.288	-0.654	1.084
	(0.710)	(1.631)	(0.783)	(5.211)
$\ln \text{GDP}_{t-5}$	-1.086*	-2.069*	-0.433	2.220
	(0.483)	(1.030)	(0.507)	(3.594)
GDP growth $t-2$	0.0514	0.531	-0.0153	-0.945
-	(0.0992)	(0.601)	(0.0745)	(1.458)
GDP growth _{$t-3$}	-0.0871	-0.244*	-0.0871*	0.0680
	(0.0573)	(0.104)	(0.0416)	(0.320)
GDP growth $t-4$	-0.0595	-0.131	-0.108*	-0.742
	(0.113)	(0.104)	(0.0499)	(1.272)
GDP growth _{t-5}	0.115	-0.160	-0.0145	0.759
	(0.744)	(0.594)	(0.0465)	(1.024)
GDP ratio _{$t-2$}	-1.261*	-0.635	0.757	0.678
	(0.575)	(0.776)	(0.580)	(1.493)
GDP ratio _{$t-3$}	1.216*	1.808*	0.369	-3.277*
	(0.496)	(0.827)	(0.443)	(1.464)
GDP ratio _{$t-4$}	-0.130	0.134	0.111	2.392
	(0.658)	(0.867)	(0.532)	(1.550)
GDP ratio _{$t-5$}	-0.147	-1.170*	-0.317	-2.529
	(0.408)	(0.495)	(0.389)	(1.297)
Constant	34.76**	41.86**	49.42**	6.064
	(4.601)	(5.003)	(4.743)	(6.092)
N treated dyads	4,359	2,543	4,382	882
N control dyads	4,359	2,543	4,382	882
Years	1982-2007	1982-2007	1986-2007	1986-2007
Matching	Yes	Yes	Yes	Yes
N treated dyads	4,359	2,543	4,382	882

Table A.2: Logistic regression of PTA ratification on human rights treaty ratification with standard errors clustered by country. The sample is limited to dyads where one partner has already ratified the human rights agreement but the other has not. The unit of observation is the (non-)ratification episode dyad, with ratification occurring in year *t*, all covariates measured in *t*-1, and most time-varying covariates measured in the years *t*-1, *t*-2, *t*-3, *t*-4, and *t*-5. The outcome variable is ratification of a PTA in years *t* through *t*+5. * indicates p < 0.05.

Bilateral Investment Treaties (BITs)

Outcome Variable	Bilateral Investment Treaty ratification					
	Model 9	Model 10	Model 11	Model 12		
Treaty	ICCPR	OP 1	CAT	Art. 22		
Effect of ratification	-1.369**	-0.782**	-0.126	1.022		
	(0.255)	(0.259)	(0.194)	(0.537)		
Physical integrity _{<i>t</i>-1}	0.253**	0.323**	0.126**	0.00132		
	(0.0572)	(0.0957)	(0.0462)	(0.238)		
BITs among export competitors _{t-}	-0.0390	-0.148	0.124*	-0.192		
1						
	(0.0872)	(0.0803)	(0.0608)	(0.217)		
Avg. Global FDI flows t-1	1.032	1.866**	0.601	2.274*		
	(0.546)	(0.565)	(0.359)	(0.924)		
Host extractive industries t-1	0.405	0.619	-1.171**	-5.393**		
	(0.503)	(0.785)	(0.404)	(1.969)		
Host corruption <i>t-1</i>	0.260	0.108	0.0498	-0.0383		
	(0.135)	(0.230)	(0.121)	(0.330)		
Host has common law <i>t-1</i>	-0.275	-0.990*	-0.563*	-1.492		
	(0.310)	(0.452)	(0.237)	(0.991)		
BITs among same religion <i>t-1</i>	-0.0491	-0.0742	0.201**	0.282		
	(0.0573)	(0.0862)	(0.0477)	(0.371)		
"learning from success" t-1	2.045	3.193*	-0.716	8.741		
0	(1.074)	(1.573)	(1.325)	(7.037)		
Coercion: use of IMF credits t_{-1}	0.108	-0.589*	-0.304	-3.354**		
	(0.356)	(0.299)	(0.237)	(0.883)		
Host GDP(\ln) _{t-1}	0.767**	0.422	-0.0490	0.859*		
	(0.230)	(0.242)	(0.151)	(0.370)		
Host GDP p.c. t.l	-0.178**	-0.570**	-0.149**	-0.468**		
1 11	(0.0514)	(0.106)	(0.0323)	(0.119)		
Host GDP growth t_{t}	-0.00616	-0.0133	0.00358	-0.0608		
0 11	(0.0258)	(0.0328)	(0.0173)	(0.0959)		
Host net FDI inflows to the second se	0.0369	-0.191*	-0.153*	-0.157		
	(0.106)	(0.0744)	(0.0773)	(0.211)		
Host illiteracy rate	-0.754	-5.991**	-1.806**	-13.41**		
5 . 1	(0.809)	(1.239)	(0.572)	(3.166)		
Host capital account $t_{r,l}$	0.0466	0.0688*	0.0346*	0.122		
1 11	(0.0271)	(0.0323)	(0.0156)	(0.0814)		
Host law and order $_{t-1}$	0.174	0.409*	0.348*	0.0680		
	(0.152)	(0.167)	(0.157)	(0.404)		
Host democracy $t_{t,l}$	0.0250	-0.0148	-0.0355*	-0.118*		
J 1-1	(0.0279)	(0.0310)	(0.0151)	(0.0564)		
Host diplomatic representation to	-0.0193	-0.00280	0.0274**	-0.0253		
I I I I I I I I I I I I I I I I I I I	(0.0123)	(0.0120)	(0.00658)	(0.0288)		
Host privatization record t_{t}	0.429	0.0208	-0.00358	1.938**		
I	(0.449)	(0.272)	(0.160)	(0.474)		
Home FDI outflows <i>i</i>	0.462**	0.199**	0.282**	0.271**		
	(0.0688)	(0.0577)	(0.0469)	(0.0885)		
Dvadic trade (% of host GDP)	-32.98	41.21	-5.488	-22.87*		
,	(18.77)	(35.17)	(6.963)	(11.66)		
Common colonial heritage	-1.472*	-0.921	0.0840	(1100)		
	(0.733)	(0.822)	(0.476)			
Common language	0.895*	0.850*	0.484	0.585		
	(0.425)	(0.382)	(0.382)	(0.528)		
	(35)	(0.002)	(0.00-)	(0.0 = 0)		

Alliance <i>t-1</i>	-0.417	0.519	-0.496	0.699
	(0.461)	(0.327)	(0.382)	(0.532)
Cold War t-1	-3.084**	-1.961**	-1.403**	-13.05**
	(0.531)	(0.650)	(0.507)	(3.609)
Number of BITs globally t-1	-0.366**	-0.454**	-0.528**	-1.407**
	(0.125)	(0.153)	(0.112)	(0.302)
GDP growth $t-2$	0.0181	-0.0112	0.0134	-0.0693
	(0.0234)	(0.0256)	(0.0145)	(0.0697)
GDP growth $t-3$	-0.0133	-0.00791	-0.00798	-0.0756
	(0.0225)	(0.0348)	(0.0201)	(0.0563)
GDP growth $t-4$	0.0333	0.0248	0.0341	0.0163
	(0.0194)	(0.0253)	(0.0184)	(0.0964)
GDP growth $t-5$	-0.0593**	-0.0200	-0.0215	0.0639
	(0.0212)	(0.0225)	(0.0177)	(0.0758)
Host FDI_{t-2}	-0.273*	-0.132	0.0382	0.498
	(0.110)	(0.140)	(0.128)	(0.347)
Host FDI_{t-3}	0.134	0.331**	0.0604	0.426
	(0.122)	(0.111)	(0.125)	(0.392)
Host FDI_{t-4}	-0.198	0.0889	0.171	0.447
	(0.181)	(0.194)	(0.168)	(0.471)
Host FDI_{t-5}	-0.0303	0.0571	-0.444**	-0.792**
	(0.184)	(0.160)	(0.167)	(0.289)
Dyadic Trade _{<i>t</i>-2}	20.65	66.17	0.457	11.83
	(23.76)	(43.61)	(9.457)	(18.37)
Dyadic Trade _{<i>t</i>-3}	18.61	-43.65	8.401	37.00
	(11.73)	(100.3)	(17.52)	(30.84)
Dyadic Trade _{<i>t</i>-4}	-29.81	-74.40	-13.02	-20.46
	(15.91)	(69.89)	(20.10)	(33.50)
Dyadic Trade _{t-5}	31.92**	42.40	9.302	4.941
	(12.22)	(30.68)	(8.433)	(24.77)
Constant	-18.20**	-9.935	-1.002	-0.388
	(4.860)	(5.554)	(3.334)	(9.826)
N treated dyads	1,948	1,255	2,034	400
N non-treated dyads	1,948	1,255	2,034	400
Years	1982-2007	1982-2007	1986-2007	1986-2007
Matching	Yes	Yes	Yes	Yes

Table A.3: Logistic regression of Bilateral Investment Treaty signing on treaty ratification with standard errors clustered by country. The unit of observation is the (non-)ratification episode, with ratification occurring in year t, all covariates measured in year t-1, and most time-varying covariates measured in the years t-1, t-2, t-3, t-4, and t-5. The sample is limited to dyads where the home country has ratified the relevant HRA. The outcome variable is whether the dyad signs a BIT in years t through t+5.

|--|

	ICCPR	OP 1	CAT	Article 22
Treaty ratification	0.0227	-0.179	0.109	0.0980
	(0.103)	(0.131)	(0.0798)	(0.128)
Treaty ratification (t-1)	-0.00759	-0.0654	0.0330	0.191
- -	(0.102)	(0.121)	(0.0757)	(0.121)
Political terror scale	0.266**	0.266**	0.269**	0.269**
	(0.0269)	(0.0269)	(0.0269)	(0.0269)
Democracy	0.00344	0.00395	0.00311	0.00320
	(0.00505)	(0.00507)	(0.00506)	(0.00505)
Armed conflict	0.0753	0.0765	0.0750	0.0764
	(0.0654)	(0.0654)	(0.0653)	(0.0653)
Percent killed in conflict	0.0488*	0.0488*	0.0488*	0.0482*
	(0.0245)	(0.0244)	(0.0246)	(0.0246)
GDP	0.0957**	0.0940**	0.102**	0.0991**
	(0.0357)	(0.0358)	(0.0361)	(0.0358)
Military personnel	0.194**	0.194**	0.192**	0.192**
	(0.0422)	(0.0422)	(0.0423)	(0.0422)
Population	-0.00165	-0.00138	-0.00793	-0.00500
-	(0.0606)	(0.0605)	(0.0607)	(0.0604)
US military aid	0.0275	0.0259	0.0275	0.0258
	(0.0188)	(0.0188)	(0.0187)	(0.0188)
Foreign aid (ODA)	0.00508	0.00545	0.00766	0.00711
	(0.0211)	(0.0211)	(0.0212)	(0.0212)
Avg. media coverage	0.0428**	0.0428**	0.0434**	0.0431**
	(0.00799)	(0.00798)	(0.00796)	(0.00796)
Constant	-1.553**	-1.525**	-1.609**	-1.585**
	(0.310)	(0.311)	(0.313)	(0.311)
Observations	1,828	1,828	1,828	1,828
Number of countries	150	150	150	150

Table A.4: Negative binomial regression of the number of Amnesty International news releases on background reports, regressed on treaty ratification and a set of controls with country random effects.

Tests of no effect at different levels of substantive and statistical significance

As discussed in the text, a lack of statistical evidence for rewards is not equivalent to evidence *against* rewards (Casella and Berger 2001). Demonstrating evidence *against* rewards requires a slightly different inferential strategy in which we first select a magnitude of effect (that we denote m) that would be considered meaningfully significant and then conduct a hypothesis test where the rejection region lies between -m and m. Conveniently, this procedure is simple within a regression framework – it is equivalent to showing that m falls outside of a standard 90 percent confidence interval constructed around the estimated coefficient (Rainey n.d).

Some analysts may not like our particular choice of m or may wish to know whether a different choice of m would lead to different conclusions. We allow researchers to make these determinations by showing the m values that would allow researchers to conclude that there are no rewards with confidence levels of 99%, 95%, 90%, 85%, 80%, and 75%. We present these graphically below. The x-axis shows m – the minimal effect size that an analyst would consider a meaningful effect. The y-axis shows the significance level of the test.

For example, if we were interested in arguing for a negligible effect in Model 1, we would be able to reject at the 95% level if we choose m > \$2.50. However, if we choose m = \$2.00, then we cannot reject at the 95% or 90% level, but can reject at the 85% level.

Figure A.1 *m* values that would allow researchers to conclude that there are no aid rewards with confidence levels of 99%, 95%, 90%, 85%, 80%, and 75%. We present these graphically below. The x-axis shows m – the minimal effect size that an analyst would consider a meaningful effect. The y-axis shows the significance level of the test.

PTA - ICCPR (Model 5)

PTA - OP 1 (Model 6)

Figure A.2 *m* values that would allow researchers to conclude that there are no PTA rewards with confidence levels of 99%, 95%, 90%, 85%, 80%, and 75%. We present these graphically below. The x-axis shows m – the minimal effect size that an analyst would consider a meaningful effect. The y-axis shows the significance level of the test.

Figure A.3 *m* values that would allow researchers to conclude that there are no BIT rewards with confidence levels of 99%, 95%, 90%, 85%, 80%, and 75%. We present these graphically below. The x-axis shows m – the minimal effect size that an analyst would consider a meaningful effect. The y-axis shows the significance level of the test.

Alternative specifications for tangible rewards models

Although we only report one model for each key result in the text, we examined many, many more reasonable and less-reasonable models which we could not present because of space. Here, we briefly summarize the key findings of 448 aid models, 344 PTA models, 344 BIT models, and 64 Amnesty shaming models. In all cases we show only the statistical significance and direction of the coefficient on *Treaty ratification*. Of the 1,200 models presented, only 174 (or 14.5%) provided any evidence that could support rewards theory. Specifically 16/448 of Aid models (3/6%), 118/344 of PTA models (34.3%), 39/344 of BIT models (11.3%), and 1/64 of Amnesty models (1.5%) could be interpreted as evidence of rewards.

The only consistent evidence for rewards is that ratification of the ICCPR or Article 22 of the CAT appears to lead to small but measurable increases in the probability of a PTA signing. Even in these cases, only a bare majority of the models indicate support for rewards.

Some notes on interpreting the tables:

- "Matching" refers to models that were run with a caliper matching procedure as a preprocessing step prior to model estimating. "Non-matching refers to a model where this preprocessing step was not performed. Matching has been demonstrated to improve causal inference in some settings. "TSCS data" refers to models estimated using data that are formatted in traditional time-series cross-section structure rather than the ratification episode structure that we prefer. In "TSCS data" models, each observation is a country year, the outcome is whether the a reward is given/received in that year, and the treatment is whether the potential rewardee ratified the relevant treaty in the previous 6 years (or 3 years, depending on alternative specifications described below).

- "Treaty members" means that the model in question estimates material rewards (aid, trade, or FDI) from ONLY those states that are themselves members of the treaty in question. In contrast, models in the columns marked "All states" estimate material rewards from all countries, regardless of whether the sending states have ratified the treaty in question.

- We check several possible windows in which material rewards could arrive by measuring the outcome variable in three possible windows. Columns marked "012345" indicate that aid (PTAs, BITs) is measured in year 0 (the year prior to signing), year 1 (the year of signing), and years 2, 3, 4, and 5. We prefer this broad window because rewards theory is ambiguous about the timing of rewards, but we test other possibilities, specifically:

a) a "012" window, measuring rewards in year 0 (prior to signing), year 1 (the year of signing) and year 2 (the year after signing).

b) a "123" window, measuring rewards in year 1 (the year of signing) and year 2 (the year after signing), and year 3 (two years after signing).

Specifications:

a) Original Specification:: the same models presented in the text.

b) *t-1 controls only*: We are including a large number of control variables in most specifications (the 1- through 5- year lags of all time varying covariates) so we might be concerned that

including all of these reduces our efficiency and creates high collinearity. We consider alternative models that include only the first year lags of each of the covariates.

c) *Random Effects and Fixed effects*: We estimate models with dyad random effects and dyad fixed effects rather than clustering the standard errors on the dyads.

d) *Tobit* (aid flows only): Aid flows are sometimes censored at zero so we estimate a tobit specification with unit random effects.

e) Alternative outcome variables: We try logging aid.

f) *One year models*: In case our multi-year windows are obscuring some effect, we estimate one year models that include only the outcome in a single year (either the year after ratification or the year before) predicted by only treaty ratification in the prior year and control variables measured in the prior year.

Aid – ICCPR

	Matching					
	Treaty members			All states		5
Model	012345	012	123	012345	012	123
Original specification	0	0	+	0	0	0
<i>t-1</i> Lagged controls only	0	0	0	0	0	0
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	0	-	0
Tobit	0	0	0	0	-	0
Logged outcome variable	0	0	0	0	0	0
	1	2		1	2	
One year models	0	0		0	0	

	No Matching					
	Treat	y memb	ers	A		
	012345	012	123	012345	012	123
Original specification	0	0	0	0	0	0
<i>t-1</i> Lagged controls only	0	0	0	0	0	0
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	0	0	0
Tobit	0	0	0	0	+	+
Logged outcome variable	+	+	+	0	0	0
	1	2		1	2	
One year models	0	0		0	0	

	TSCS data					
	Treat	ty memb	ers	A	5	
	012345	012	123	012345	012	123
Original specification	0	0	0	0	0	0
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	0	0	0
Tobit	0	0	0	0	0	0
Logged outcome variable	0	0	0	0	0	0
	1	2		1	2	
One year models	NA	NA		NA	NA	

Table A.5: Results of many regressions predicting aid flows as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

Aid – OP 1

	Matching					
	Treaty members			All states		3
Model	012345	012	123	012345	012	123
Original specification	0	0	0	0	0	0
<i>t-1</i> Lagged controls only	-	-	-	0	0	0
Random effects	0	0	0	0	+	0
Fixed effects	-	0	-	0	0	0
Tobit	0	0	0	0	0	0
Logged outcome variable	0	0	0	0	0	0
	1	2		1	2	
One year models	0	0		0	0	

	No Matching					
	Treaty members			A		
	012345	012	123	012345	012	123
Original specification	0	0	0	0	0	0
<i>t-1</i> Lagged controls only	0	0	0	0	0	0
Random effects	0	0	0	0	0	0
Fixed effects	+	0	0	0	0	0
Tobit	0	0	0	0	0	0
Logged outcome variable	0	0	0	0	-	-
	1	2		1	2	
One year models	0	0		0	-	

	TSCS data					
	Treaty members			A	5	
	012345	012	123	012345	012	123
Original specification	0	0	0	0	0	0
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	0	0	0
Tobit	-	-	0	-	-	0
Logged outcome variable	-	-	-	-	-	-
	1	2		1	2	
One year models	NA	NA		NA	NA	

Table A.6: Results of many regressions predicting aid flows as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

Aid – CAT

	Matching							
Model	Treaty members			All states				
	012345	012	123	012345	012	123		
Original specification	0	0	0	0	0	0		
<i>t-1</i> Lagged controls only	0	0	0	0	-	0		
Random effects	0	0	0	0	0	0		
Fixed effects	0	0	0	0	0	-		
Tobit	+	+	0	0	0	0		
Logged outcome variable	0	0	0	0	-	0		
	1	2		1	2			
One year models	0	0		0	0			

	No Matching						
	Treaty members			A			
	012345	012	123	012345	012	123	
Original specification	0	0	0	+	0	0	
<i>t-1</i> Lagged controls only	0	0	0	0	0	0	
Random effects	0	0	0	0	0	0	
Fixed effects	0	0	+	0	0	0	
Tobit	0	0	0	0	0	0	
Logged outcome variable	+	0	+	+	0	0	
	1	2		1	2		
One year models	0	0		0	0		

	TSCS data					
	Treaty members			I	3	
	012345	012	123	012345	012	123
Original specification	-	-	-	-	0	-
<i>t-1</i> Lagged controls only	NA	NA	NA	NA	NA	NA
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	-	0	0
Tobit	0	0	0	0	-	0
Logged outcome variable	-	-	0	0	-	0
	1	2		1	2	
One year models	NA	NA		NA	NA	

Table A.7: Results of many regressions predicting aid flows as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

Aid – Art. 22

	Matching							
	Treat	y memb	ers	A	All states	5		
Model	012345	012	123	012345	012	123		
Original specification	0	0	0	0	0	0		
<i>t-1</i> Lagged controls only	0	0	0	0	0	0		
Random effects	0	0	0	0	0	0		
Fixed effects	0	0	+	0	0	0		
Tobit	0	0	0	0	0	0		
Logged outcome variable	0	0	0	0	0	0		
	1	2		1	2			
One year models	-	0		0	0			

	No Matching						
	Treaty members			A			
	012345	012	123	012345	012	123	
Original specification	0	0	0	0	0	0	
<i>t-1</i> Lagged controls only	0	0	0	0	0	0	
Random effects	0	0	0	0	0	0	
Fixed effects	0	0	0	0	0	0	
Tobit	0	0	0	0	0	0	
Logged outcome variable	0	0	0	0	0	0	
	1	2		1	2		
One year models	0	0		0	0		

	TSCS data					
	Treaty members			All states		
	012345	012	123	012345	012	123
Original specification	0	0	0	-	-	0
<i>t-1</i> Lagged controls only	NA	NA	NA	NA	NA	NA
Random effects	0	0	0	0	0	0
Fixed effects	0	0	0	0	0	0
Tobit	0	0	-	-	-	-
Logged outcome variable	0	0	0	-	-	0
	1	2		1	2	
One year models	NA	NA		NA	NA	

Table A.8: Results of many regressions predicting aid flows as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

PTAs – ICCPR

			Mat	tching			
	Treat	ty memb	ers	1	All states	5	
Model	012345	012	123	012345	012	123	
Original specification	+	+	0	+	+	0	
<i>t</i> -1 Lagged controls only	+	+	0	+	+	0	
Random effects	+	+	+	+	+	+	
Fixed effects	0	n.c.	0	0	n.c.	0	
	1	2		1	2		
One year models	0	0		+	0		
		No Matching					
	Treat	Treaty members			All states		
	012345	012	123	012345	012	123	
Original specification	+	+	+	+	+	0	
<i>t-1</i> Lagged controls only	+	+	+	+	+	0	
Random effects	+	+	+	+	+	+	
Fixed effects	+	0	0	0	n.c.	0	
	1	2		1	2		
One year models	+	+		+	0		
		TSCS data					
	Treat	ty memb	ers	1	All states		

	Treaty members			All states		
	012345	012	123	012345	012	123
Original specification	+	+	n.c.	+	+	+
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA
Random effects	+	+	n.c.	+	+	+
Fixed effects	+	+	n.c.	+	+	+
	1	2		1	2	
One year models	NA	NA		NA	NA	

Table A.9: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

PTAs – OP 1

	Matching						
	Treat	y memb	ers	A	All states	5	
Model	012345	012	123	012345	012	123	
Original specification	0	0	0	0	0	0	
<i>t-1</i> Lagged controls only	0	0	0	0	0	0	
Random effects	0	+	0	0	0	0	
Fixed effects	0	n.c.	n.c.	0	0	n.c.	
	1	2		1	2		
One year models	0	+		0	0		
	No Matching						
	Treat	y memb	ers	A	Il states		
	012345	012	123	012345	012	123	
Original specification	+	+	+	0	0	0	
<i>t-1</i> Lagged controls only	+	+	+	0	0	n.c.	
Random effects	+	+	+	0	0	0	
Fixed effects	0	+	0	0	0	n.c.	
	1	2		1	2		
One year models	+	+		0	0		
			TSCS	data			
	Treat	y memb	ers	I	All states		
	012345	012	123	012345	012	123	
Original specification	0	0	n.c.	0	+	+	
<i>t-1</i> Lagged controls only	NA	NA	NA	NA	NA	NA	
Random effects	0	0	n.c.	0	+	+	
Fixed effects	+	+	n.c.	0	0	0	
	1	2		1	2		
One year models	NA	NA		NA	NA		

Table A.10: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+" or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

PTAs – CAT

	Matching						
	Treat	y memb	ers	A	All states		
Model	012345	012	123	012345	012	123	
Original specification	0	0	0	0	0	-	
<i>t-1</i> Lagged controls only	0	0	0	0	0	-	
Random effects	0	0	0	0	0	-	
Fixed effects	0	0	0	0	n.c.	n.c.	
	1	2		1	2		
One year models	0	0		0	0		
	No Matching						
	Treat	y memb	ers	A	Il states		
	012345	012	123	012345	012	123	
Original specification	0	0	-	0	0	-	
<i>t-1</i> Lagged controls only	0	+	0	0	0	-	
Random effects	+	0	-	0	0	-	
Fixed effects	0	0	0	0	n.c.	n.c.	
	1	2		1	2		
One year models	0	0		0	0		
	. <u> </u>		TSCS	5 data			
	Treat	y memb	ers	I	All states		
	012345	012	123	012345	012	123	
Original specification	+	+	n.c.	-	0	-	
<i>t-1</i> Lagged controls only	NA	NA	NA	NA	NA	NA	
Random effects	+	+	n.c.	-	+	-	
Fixed effects	+	+	n.c.	-	0	-	
	1	2		1	2		
One year models	NA	NA		NA	NA		

Table A.11: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

PTAs – Art. 22

	Matching								
	Treat	All states							
Model	012345	012	123	012345	012	123			
Original specification	+	+	+	0	0	0			
<i>t-1</i> Lagged controls only	+	+	+	0	0	0			
Random effects	+	0	n.c.	n.c.	0	0			
Fixed effects	n.c.	n.c.	n.c.	0	n.c.	n.c.			
	1	2		1	2				
One year models	0	n.c.		0	0				
			No M	atching					

	Treat	y memb	ers	All states			
	012345	012	123	012345	012	123	
Original specification	+	+	+	0	0	0	
<i>t-1</i> Lagged controls only	+	+	+	0	0	0	
Random effects	+	+	+	n.c.	0	0	
Fixed effects	+	+	+	0	n.c.	n.c.	
	1	2		1	2		
One year models	+	+		0	0		

	TSCS data								
	Treat	ers	A	3					
	012345	012	123	012345	012	123			
Original specification	+	+	n.c.	0	+	0			
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA			
Random effects	+	+	n.c.	0	+	0			
Fixed effects	+	+	n.c.	0	+	0			
	1	2		1	2				
One year models	NA	NA		NA	NA				

Table A.12: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

BITs – ICCPR

	Matching								
	Treat	ty memb	I	3					
Model	012345	012	123	012345	012	123			
Original specification	-	-	-	0	0	0			
<i>t-1</i> Lagged controls only	-	-	-	-	0	-			
Random effects	-	-	-	-	0	-			
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.			
	1	2		1	2				
One year models	-	-		0	+				

	No Matching								
	Treat	y memb	ers	A					
	012345	012	123	012345	012	123			
Original specification	-	-	-	0	0	0			
<i>t</i> -1 Lagged controls only	-	-	-	-	0	-			
Random effects	0	-	n.c.	-	0	-			
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.			
	1	2		1	2				
One year models	-	-		0	+				

	TSCS data								
	Treat	ers	I	5					
	012345	012	123	012345	012	123			
Original specification	0	0	0	0	0	0			
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA			
Random effects	0	0	0	0	0	0			
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.			
	1	2		1	2				
One year models	NA	NA		NA	NA				

Table A.13: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

BITs – Opt 1

-	Matching									
	Treat	y memb	ers	A	All states	5				
Model	012345	012	123	012345	012	123				
Original specification	-	-	0	0	-	0				
<i>t</i> -1 Lagged controls only	-	-	0	0	-	0				
Random effects	-	-	0	-	-	0				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	0	0		0	0					
			No M	atching						
	Treat	y memb	ers	A	Il states					
	012345	012	123	012345	012	123				
Original specification	0	0	+	0	-	0				
<i>t-1</i> Lagged controls only	+	0	+	0	-	0				
Random effects	+	0	+	-	-	0				
Fixed effects	n.c	n.c.	0	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	0	0		0	0					
			TSCS	data						
	Treat	y memb	ers	A	All states	5				
	012345	012	123	012345	012	123				
Original specification	0	0	0	+	+	+				
<i>t</i> -1 Lagged controls only	NA	NA	NA	NA	NA	NA				
Random effects	0	0	0	+	+	+				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	NA	NA		NA	NA					

Table A.14: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

BITs - CAT

One year models

	Matching									
	Treat	ty memb	oers	I	All states	5				
Model	012345	012 123		012345	012	123				
Original specification	0	-	0	-	-	0				
<i>t-1</i> Lagged controls only	0	-	0	-	-	0				
Random effects	0	-	0	-	-	-				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	0				
	1	2		1	2					
One year models	0	0		-	0					
		No Matching								
	Treat	y memb	A	Il states						
	012345	012	123	012345	012	123				
Original specification	0	0	0	-	-	0				
<i>t</i> -1 Lagged controls only	-	-	-	-	-	0				
Random effects	0	-	0	-	-	-				
Fixed effects	n.c.	n.c.	0	n.c.	n.c.	0				
	1	2		1	2					
One year models	0	0		-	0					
		TSCS data								
	Treat	ty memb	oers	I	All states	5				
	012345	012	123	012345	012	123				
Original specification	0	0	0	+	+	+				
<i>t-1</i> Lagged controls only	NA	NA	NA	NA	NA	NA				
Random effects	0	0	0	+	+	+				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.				

Table A.15: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+" or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

1

NA

2

NA

2

NA

1

NA

BITs – Art 22

	Matching									
	Treat	y memb	ers		All states					
Model	012345	012	123	012345	012	123				
Original specification	0	0	n.c.	-	-	-				
<i>t-1</i> Lagged controls only	0	0	+	-	-	0				
Random effects	0	0	n.c.	-	-	-				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	0	n.c.		0	n.c.					
		No Matching								
	Treat	y memb	ers	A						
	012345	012	123	012345	012	123				
Original specification	0	+	+	-	-	0				
<i>t</i> -1 Lagged controls only	0	+	0	-	-	0				
Random effects	0	0	+	-	-	-				
Fixed effects	n.c.	n.c.	0	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	+	+		0	n.c.					
		TSCS data								
	Treat	y memb	ers	1	All states					
	012345	012	123	012345	012	123				
Original specification	0	0	0	0	+	0				
<i>t</i> - <i>1</i> Lagged controls only	NA	NA	NA	NA	NA	NA				
Random effects	0	0	0	0	+	0				
Fixed effects	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.				
	1	2		1	2					
One year models	NA	NA		NA	NA					

Table A.16: Results of many regressions predicting PTA signing as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+" or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

The following models are on subsets of the data where rewards might be theoretically more likely. We tested whether rewards were more likely among allies, frequent trading partners (above median dyadic trade flows), between the US and Latin America, Former colonizers and colonies, "Transition countries" as coded by Simmons (2009), and middle/low income countries (below median GDP p.c.). We find some positive results but no consistent pattern indicating that we are missing a broad pattern of international rewards for ratification by not focusing on the appropriate subset of states.

	Foreign Aid									
	All lags of covariates				<i>t</i> -1 lags of covariates only					
	ICCPR	Opt 1	CAT	Art. 22	ICCPR	Opt 1	CAT	Art. 22		
Allies	0	0	0	0	0	0	0	0		
Trading partners	0	0	0	0	0	0	-	0		
US – Latin America	0	0	0	0	0	0	0	0		
Former colonies	0	0	0	0	0	0	0	0		
Transition countries	0	0	0	0	0	0	-	0		
Middle/low income	0	0	0	0	0	0	-	0		

	PTAs										
	All lags of covariates				<i>t-1</i> lags of covariates only						
	ICCPR	Opt 1	CAT	Art. 22	ICCPR	Opt 1	CAT	Art. 22			
Allies	0	0	0	0	0	0	0	0			
Trading partners	+	0	0	+	+	0	0	+			
US – Latin America	n.c.	n.c.	n.c.	n.c.	+	0	0	0			
Former colonies	n.c.	n.c.	n.c.	n.c.	0	0	0	0			
Transition countries	+	0	0	0	+	0	0	0			
Middle/low income	+	0	0	+	+	0	0	0			

	BITs										
	All lags of covariates				<i>t-1</i> lags of covariates only						
	ICCPR	Opt 1	CAT	Art. 22	ICCPR	Opt 1	CAT	Art. 22			
Allies	0	+	-	0	-	+	-	0			
Trading partners	-	+	0	+	-	+	0	+			
US – Latin America	0	0	0	0	0	0	0	0			
Former colonies	0	0	-	0	0	0	-	0			
Transition countries	-	+	0	+	-	+	0	0			
Middle/low income	0	-	+	0	0	-	+	0			

Table A.17: Alternative models on subsets of the data where rewards might be more likely.

	ICCP R	ICCP R (t-1)	OP 1	OP 1 (t-1)	CAT	CAT (t-1)	Art 22	Art 22 (t-1)
Original models	0	0	0	0	0	0	0	0
All treaties together	0	0	0	0	0	0	0	0
News reports only	0	0	0	0	0	0	0	0
Briefs only	0	0	0	0	0	0	0	0
No lagged ratification	0		0		0		0	
Fixed Effects	0	0	0	0	0	0	0	0
States in upper 70% of shaming.	0	0	0	0	0	0	0	0
States in upper 50% of shaming.	+	0	0	0	0	0	0	0

Alternative specifications for Amnesty International criticism

Table A.18: Results of many regressions predicting Amnesty International shaming in news reports and briefs as a function of treaty ratification. Results that are statistically insignificant are noted with "0". Results that are significant at the 5% level are shown as either positive "+"or negative "-". Results that contradict rewards theory are shown in **blue** and results that support rewards theory are shown in **red**.

Description of alternative specifications:

a) Original models: as presented in the text

b) *All treaties together*: Rather than estimating the effects of ratifying each treaty in four separate regressions, here we estimate them all together in the same model.

c) *News Reports only* and *Briefs only*: The Amnesty international coverage comes from two sources; we estimate separate specifications for each source to make sure there is not some differential effect.

d) *No lagged ratification*: In these models, I look only at the effect of ratification in the year after, excluding any effect of ratification in the year of ratification.

e) Fixed effects: I used fixed unit effects rather than random effects.

f) *States in upper 70% (50%) of shaming*: One concern is that ratification might have effects for states that get the most shaming but this effect is washed out by null results from states that never get shamed in the first place. I take the average number of criticisms over the entire time-period and limit the sample to states that are in the top 70% and top 50%.

Models of Economic Flows

In the text we note that models of trade and FDI flows following HRA ratification give no support to rewards theory. The full models are presented below.

Trade

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ICCPR	OP 1	CAT	Article 22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Treaty ratification	-0.119	-0.283***	-0.0254	-0.00673
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	·	(0.0750)	(0.0748)	(0.0571)	(0.131)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Land Area (time invariant)	-0.0245	-0.0359	-0.0140	-0.0480*
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(0.0191)	(0.0232)	(0.0124)	(0.0261)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Distance (time invariant)	-0.0647	0.00928	-0.0278	-0.0508
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.0719)	(0.0562)	(0.0495)	(0.0686)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Island (time invariant)	0.0416	-0.0767	0.0880	0.0374
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.0808)	(0.102)	(0.0649)	(0.132)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Landlocked (time invariant)	-0.0513	-0.000319	-0.0477	-0.0920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.0728)	(0.0722)	(0.0499)	(0.0791)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shared border (time invariant)	-	0.167	0.411***	0.283
$\begin{array}{c ccccc} {\rm Shared language (time invariant)} & 0.000750 & -0.00298 & -0.0651 & 0.0412 \\ (0.0892) & (0.106) & (0.0757) & (0.132) \\ {\rm Imports (t-1)} & 0.523^{***} & 0.378^{***} & 0.417^{***} & 0.649^{***} \\ (0.0560) & (0.0870) & (0.0578) & (0.0787) \\ {\rm Physical integrity violations (t-1)} & 0.0362 & -0.00733 & -0.0188 & -0.0182 \\ (0.0234) & (0.0215) & (0.0156) & (0.0407) \\ {\rm Political rights (t-1)} & -0.0424^{*} & -0.00808 & 0.0226 & 0.0199 \\ (0.0226) & (0.0199) & (0.0159) & (0.0283) \\ {\rm Both GATT (t-1)} & -0.213 & -0.131 & -0.109 & 0.133 \\ (0.206) & (0.329) & (0.427) & (0.572) \\ {\rm One GATT (t-1)} & -0.693^{**} & -0.512 & -0.308 & 0.220 \\ (0.345) & (0.440) & (0.449) & (0.628) \\ {\rm Reciprocal PTA (t-1)} & 0.304 & 0.264^{*} & 0.527^{***} \\ (0.203) & (0.143) & (0.203) \\ {\rm Non-reciprocal PTA (t-1)} & -0.346 & -0.0318 & 0.0793 & -0.0953 \\ (0.257) & (0.216) & (0.203) & (0.315) \\ {\rm GSP (t-1)} & -0.105 & -0.267^{*} & -0.178 & -0.0440 \\ (0.158) & (0.141) & (0.196) & (0.197) \\ {\rm GDP (t-1)} & -0.0102 & 0.0655 & 0.284^{**} & 0.127 \\ (0.179) & (0.189) & (0.114) & (0.183) \\ {\rm Imports (t-2)} & 0.124^{*} & 0.141 & 0.192^{***} & 0.0653 \\ (0.0636) & (0.1000) & (0.0537) & (0.0948) \\ {\rm Physical integrity violations (t-2)} & -0.0562^{*} & 0.0108 & -0.0123 & 0.0294 \\ (0.0341) & (0.0255) & (0.0140) & (0.0438) \\ {\rm Political rights (t-2)} & 0.0247 & 0.0333 & -0.00590 & 0.0549^{*} \\ (0.0151) & (0.0247) & (0.033) & -0.00590 & 0.0549^{*} \\ (0.0131) & 0.00522 & 1.068^{***} & 0.363^{**} & -1.090^{***} \\ \end{array} \right)$		-	(0.188)	(0.113)	(0.231)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shared language (time invariant)	0.000750	-0.00298	-0.0651	0.0412
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(0.0892)	(0.106)	(0.0757)	(0.132)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Imports (t-1)	0.523***	0.378***	0.417***	0.649***
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	(0.0560)	(0.0870)	(0.0578)	(0.0787)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Physical integrity violations (t-1)	0.0362	-0.00733	-0.0188	-0.0182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.0234)	(0.0215)	(0.0156)	(0.0407)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Political rights (t-1)	-0.0424*	-0.00808	0.0226	0.0199
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(0.0226)	(0.0199)	(0.0159)	(0.0283)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Both GATT (t-1)	-0.213	-0.131	-0.109	0.133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.206)	(0.329)	(0.427)	(0.572)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	One GATT (t-1)	-0.693**	-0.512	-0.308	0.230
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.345)	(0.440)	(0.449)	(0.628)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reciprocal PTA (t-1)	0.304		0.264*	0.527***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • •	(0.203)		(0.143)	(0.203)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Non-reciprocal PTA (t-1)	-0.346	-0.0318	0.0793	-0.0953
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r ()	(0.257)	(0.216)	(0.203)	(0.315)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GSP (t-1)	-0.105	-0.267*	-0.178	-0.0440
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.158)	(0.141)	(0.196)	(0.197)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GDP (t-1)	-0.0102	0.0655	0.284**	0.127
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.179)	(0.189)	(0.114)	(0.183)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Imports (t-2)	0.124*	0.141	0.192***	0.0653
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.0636)	(0.1000)	(0.0537)	(0.0948)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Physical integrity violations (t-2)	-0.0562*	0.0108	-0.0123	0.0294
Political rights (t-2)0.02470.0333-0.005900.0549*(0.0191)(0.0234)(0.0165)(0.0331)Both GATT (t-2)-0.005221.068***0.363**-1.090***		(0.0341)	(0.0255)	(0.0140)	(0.0438)
(0.0191)(0.0234)(0.0165)(0.0331)Both GATT (t-2)-0.005221.068***0.363**-1.090***	Political rights (t-2)	0.0247	0.0333	-0.00590	0.0549*
Both GATT (t-2) -0.00522 1.068*** 0.363** -1.090***		(0.0191)	(0.0234)	(0.0165)	(0.0331)
	Both GATT (t-2)	-0.00522	1.068***	0.363**	-1.090***

	(0.235)	(0.363)	(0.169)	(0.293)
One GATT (t-2)		0.337	0.450*	
		(0.441)	(0.242)	
Reciprocal PTA (t-2)		-0.216*		-0.128
•		(0.124)		(0.241)
Non-reciprocal PTA (t-2)	0.545*	-0.226	-0.359	0.602*
······································	(0.310)	(0.310)	(0.261)	(0.313)
GSP (t-2)	0.164	0.110	0.167	-0.0245
	(0.233)	(0.171)	(0.204)	(0.211)
GDP (t-2)	0.237	0.0773	-0.140	-0.302
	(0.220)	(0.241)	(0.124)	(0.240)
Imports (t-3)	-0.0609	0.255***	0.0854	-0.0107
	(0.0680)	(0.0894)	(0.0545)	(0.0964)
Physical integrity violations (t-3)	0.0793**	0.0109	0.00770	-0.0628**
	(0.0318)	(0.0295)	(0.0156)	(0.0302)
Political rights (t-3)	0.0224	-0.0306	-0.0232	-0.0147
	(0.0180)	(0.0293)	(0.0187)	(0.0296)
Both GATT (t-3)	0.140	-0.623**	0.112	
	(0.190)	(0.264)	(0.307)	
One GATT (t-3)	-0.533*			-1.027**
	(0.292)			(0.495)
Reciprocal PTA (t-3)	(**=>=)		-0 307**	0.313
			(0.140)	(0.354)
Non-reciprocal PTA (t-3)	-0 393	0.0406	0 440**	-0.234
	(0.293)	(0.342)	(0.174)	(0.240)
GSP(t-3)	0.0476	-0.0528	-0 320**	0.197
	(0.144)	(0.216)	(0.125)	(0.126)
GDP(t-3)	0.136	-0.361	-0 154	0.462**
GDT ((3)	(0.215)	(0.275)	(0.101)	(0.212)
Imports (t-4)	0 204**	0.0275	0.0279	0.0697
	(0.0903)	(0.0583)	(0.0430)	(0.0675)
Physical integrity violations (t-4)	0.0229	-0.0388	0.00420	0.00238
	(0.0299)	(0.0372)	(0.0160)	(0.0399)
Political rights (t-4)	-0.0244	0.0202	0.0411**	-0.0478
	(0.0215)	(0.0304)	(0.0208)	(0.0333)
Both GATT (t-4)	-0.245	-0.318**	-0.266	1.096**
	(0.172)	(0.124)	(0.286)	(0.514)
One GATT (t-4)		-0.742**	-0.408	0.816
		(0.311)	(0.385)	(0.659)
Reciprocal PTA (t-4)	-0.0805		(,	-0.193
	(0.194)			(0.377)
Non-reciprocal PTA (t-4)	-0.0324		-0 328	(0.577)
	(0.598)		(0.259)	
GSP(t-A)	(0.550)	-0 356*	0.557**	-0.400
	(0.511)	(0.209)	(0.216)	(0.256)
GDP (t-4)	-0 799***	0.165	0 102	-0.276
	(0.231)	(0.271)	(0.102)	(0.213)
Imports (t-5)	0.0597	0.271	0.0862**	0 112**
mpono (i J)	0.0574	0.07/1	0.0002	0.112

	(0.0846)	(0.0678)	(0.0338)	(0.0549)
Political integrity violations (t-5)	-0.0595***	0.0178	0.0343**	0.0204
	(0.0181)	(0.0245)	(0.0162)	(0.0300)
Political rights (t-5)	-0.00324	-0.00736	-0.0234	-0.00343
	(0.0187)	(0.0272)	(0.0190)	(0.0287)
Both GATT (t-5)	0.369	-0.198	0.00922	-0.427
	(0.243)	(0.194)	(0.219)	(0.293)
One GATT (t-5)	1.023***	0.446	0.509*	-0.229
	(0.266)	(0.326)	(0.270)	(0.402)
Reciprocal PTA (t-5)	-0.180		-0.0652	-0.719**
	(0.165)		(0.106)	(0.342)
Non-reciprocal PTA (t-5)	0.182	0.188	0.162	-0.354
	(0.524)	(0.293)	(0.247)	(0.244)
GSP (t-5)	-0.0440	0.0919	-0.558***	0.0478
	(0.502)	(0.133)	(0.207)	(0.219)
GDP (t-5)	0.561***	0.178	0.0818	0.0874
	(0.158)	(0.143)	(0.112)	(0.150)
Constant	-0.0617	0.172	-2.573**	1.265
	(1.310)	(1.495)	(1.020)	(1.878)
N ratification episodes	245	194	458	87
N non-ratification episodes	264	185	573	235
R-squared	0.94	0.92	0.91	0.90
Matching	Yes	Yes	Yes	Yes

Table A.19: Linear regression of trade imports from non-OECD countries to OECD countries on treaty ratification with standard errors clustered by country and country random effects. The unit of observation is the (non-)ratification episode dyad, with ratification occurring in year *t*, the covariates measured in the years *t*-1, *t*-2, *t*-3, *t*-4, and *t*-5. The outcome variable is total imports from non-OECD countries to OECD countries that have ratified the relevant treaty in years *t* through t+5. * indicates p < 0.05.

	ICCPR	OP 1	CAT	Article 22
	1 1 4 0	0.607	0.260	0.00010
I reaty ratification	-1.168	-0.62/	0.269	(0.00210)
	(1.734)	(1.0/1)	(0.740)	(0.456)
FDI(t-1)	1×10^{-12}	2×10^{-12}	4.2×10^{-12}	4×10^{-12}
\mathbf{D}	(4x10)	(1.7×10^{-1})	(2.3×10^{-1})	(1X10)
Physical integrity violations (t-1)	0.0459	(0.0288)	(0.0377)	0.05/1
$D = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$	(0.0957)	(0.0310)	(0.0399)	(0.0361)
Pontical rights (t-1)	(0.168)	(0.0275)	(0.0515)	0.0055
CDD non conits $(t, 1)$	(0.108)	(0.0057)	(0.0048)	(0.0330)
GDP per capita (t-1)	-9.383	(12,10)	8.337	4.751 (12.70)
CDD per conito ² $(t, 1)$	(17.72)	(12.10)	(12.31)	(13.70)
GDP per capita (t-1)	(1.260)	-1.040	-0.000	-0.301
$T_{rada}(t, 1)$	(1.200)	(0.647)	(0.004)	(0.871)
11ade (t-1)	(1.313)	(0.337)	(0.295)	(0.083^{**})
$\mathbf{D}_{\mathbf{a}}$	(1.442)	(0.492)	(0.331)	(0.309)
Democracy (I-1)	(0.00320)	(0.221)	(0.138)	(0.0071)
Pagima durability (t 1)	(0.0727)	(0.143)	(0.129)	(0.0971)
Regime durability (t-1)	(0.0630)	(0.0247)	(0.0141)	(0.0249)
GDP growth (t 1)	0.00308	(0.0304)	0.0387	0.00786
ODF glowill (t-1)	-0.00308	$(0.0490)^{\circ}$	(0.0387)	(0.00780)
Exchange rate volatility (t 1)	0.00116*	0.000366	0.000470*	0.000722*
Exchange rate volatility (t-1)	(0.00110°)	(0.000300)	(0.000470°)	(0.000722)
Inflation (t_1)	(0.000024)	(0.000241)	(0.000238)	0.00136*
	(0.0149)	(0.00313)	(0.000992)	(0.00130°)
EDI(t 2)	(0.0147) 1×10^{-11}	(0.00333) 1 3x10 ⁻¹²	(0.00400) 7 6x10 ⁻¹³	2×10^{-12}
$\Gamma D \Gamma (t-2)$	(7×10^{-12})	(1.8×10^{-12})	(2.6×10^{-12})	(2.2×10^{-12})
Physical integrity violations (t 2)	0.0867	0.0384	0.0360	(2.2X10)
Thysical integrity violations (t-2)	(0.125)	(0.0304)	(0.030)	(0.0353)
Political rights (t-2)	-0.0253	-0.0970	-0.0713	-0.0552
ronnear rights (t 2)	(0.121)	(0.0771)	(0.0713)	(0.0552)
GDP per capita (t-2)	25.60	-0.278	-9 921	-11 59
ODT per cupitu (t 2)	(21.25)	(8.972)	(10.20)	(13.41)
GDP per capita ² $(t-2)$	-1 987	0.0325	0 567	0.662
	(1.572)	(0.582)	(0.663)	(0.871)
Trade (t-2)	-1.724	-0.221	0.00563	-0.376
	(1.491)	(0.443)	(0.402)	(0.450)
Democracy (t-2)	-0.00190	-0.130	-0.0874	-0.132
	(0.0855)	(0.132)	(0.103)	(0.0983)
Regime durability (t-2)	0.0842	-0.00535	-0.0132	-0.0207
	(0.0872)	(0.0114)	(0.0207)	(0.0168)
GDP growth (t-2)	0.0276	0.0565*	0.0481	0.0508**
	(0.0391)	(0.0305)	(0.0299)	(0.0210)
Exchange rate volatility (t-2)	0.00292	-0.000218	-2.90e-05	0.000132

	(0.00944)	(0.000700)	(6.88e-05)	(0.000243)
FDI (t-3)	$1.2 \times 10^{-11} *$	-2.5×10^{-13}	1.3×10^{-12}	-9.4×10^{-13}
	7×10^{-12}	$(2x10^{-12})$	$(4x10^{-12})$	(2.2×10^{-12})
Physical integrity violations (t-3)	0.0431	-0.130	-0.0992	-0.0951
	(0.112)	(0.112)	(0.0837)	(0.0725)
Political rights (t-3)	-0.244*	0.00404	0.0619	0.0460
	(0.129)	(0.0563)	(0.0690)	(0.0737)
GDP per capita (t-3)	20.18	0.609	-3.061	6.877
	(19.79)	(9.098)	(7.942)	(6.564)
GDP per capita ² $(t-3)$	-1.179	0.0802	0.436	-0.273
	(1.322)	(0.717)	(0.641)	(0.466)
Trade (t-3)	-2.080	-0.553	-0.842	-0.641
	(1.818)	(0.547)	(0.625)	(0.517)
Democracy (t-3)	0.120	-0.0554	-0.0570	0.0650**
	(0.0783)	(0.0660)	(0.0613)	(0.0277)
Regime durability (t-3)	0.0201	-0.00281	0.0117	-0.00771
	(0.0661)	(0.0126)	(0.0183)	(0.0170)
GDP growth (t-3)	0.102	0.0180	0.00519	0.00563
	(0.0676)	(0.0218)	(0.0289)	(0.0197)
Exchange rate volatility (t-3)	0.00193	0.000693	3.50e-05	-4.96e-05
	(0.00176)	(0.000846)	(6.02e-05)	(5.80e-05)
FDI (t-4)	$-2x10^{-11}$ **	-2.5×10^{-12}	$-9x10^{-13}$	1×10^{-13}
	$(9x10^{-12})$	$(3x10^{-12})$	$(6x10^{-12})$	(2.6×10^{-12})
Physical integrity violations (t-4)	-0.239	0.0208	0.0209	-0.0109
	(0.267)	(0.0718)	(0.0967)	(0.0776)
Political rights (t-4)	0.127	-0.0616	-0.0626	-0.0187
	(0.186)	(0.0810)	(0.0813)	(0.0745)
GDP per capita (t-4)	6.873	4.740	9.129	13.53*
	(15.93)	(5.097)	(8.332)	(8.189)
GDP per capita ² (t-4)	-0.581	-0.326	-0.597	-0.819
	(1.084)	(0.378)	(0.555)	(0.520)
Trade (t-4)	3.704	1.462	1.885*	1.728*
	(2.929)	(0.910)	(1.120)	(1.009)
Democracy (t-4)	-0.00180	-0.0743	-0.0511	-0.0702
	(0.0552)	(0.0490)	(0.0522)	(0.0607)
Regime durability (t-4)	0.0560	0.0224	-0.00664	0.00123
	(0.0606)	(0.0244)	(0.0260)	(0.0141)
GDP growth (t-4)	0.0361	0.00128	-0.0320	-0.0193
	(0.0460)	(0.0224)	(0.0221)	(0.0149)
Exchange rate volatility (t-4)	-0.000757	0.00146	5.82e-05	-2.53e-05
	(0.00311)	(0.00135)	(7.13e-05)	(5.63e-05)
FDI (t-5)	$1.4 \times 10^{-11} *$	1×10^{-13}	-4.9×10^{-12}	-3×10^{-13}
	(7×10^{-12})	(1.5×10^{-12})	$(4x10^{-12})$	$(2x10^{-12})$
Physical integrity violations (t-5)	-0.0712	-0.100	-0.0938	-0.0928*
	(0.0962)	(0.0857)	(0.0849)	(0.0524)
Political rights (t-5)	0.284	-0.0234	-0.0717	-0.0140
	(0.176)	(0.0895)	(0.116)	(0.0476)
GDP per capita (t-5)	-38.62*	-13.25	1.840	-9.397

	(20.54)	(9.091)	(6.205)	(8.170)
GDP per capita ² (t-5)	2.723*	0.870	-0.166	0.562
	(1.487)	(0.572)	(0.415)	(0.509)
Trade (t-5)	-0.788	-0.390	-0.544*	-0.665**
	(1.248)	(0.255)	(0.304)	(0.260)
Democracy (t-5)	-0.110	0.106	0.120	0.0706
	(0.0939)	(0.0854)	(0.100)	(0.0616)
Regime durability (t-5)	-0.0489	-0.0275	-0.0117	-0.000696
	(0.0757)	(0.0299)	(0.0330)	(0.0211)
GDP growth (t-5)	-0.00372	0.0231	0.00655	-0.00548
-	(0.0276)	(0.0180)	(0.0188)	(0.0103)
Exchange rate volatility (t-5)	0.000300	0.00131	8.05e-05**	-1.07e-05
	(0.00309)	(0.00112)	(3.92e-05)	(4.41e-05)
Constant	-11.65	-21.17	-18.63	-9.074
	(14.23)	(17.78)	(17.14)	(10.23)
Observations	172	429	394	614
Number of countries	37	67	70	87
R-squared	0.65	0.51	0.41	0.57
Matching	Yes	Yes	Yes	Yes

Table A. 20: Linear regression of FDI inflows (per GDP) on treaty ratification with standard errors clustered by country and country random effects. The unit of observation is the (non-)ratification episode, with ratification occurring in year *t*, the covariates measured in the years t-1, t-2, t-3, t-4, and t-5. The outcome variable is total inflows of FDI as a fraction of GDP in years *t* through t+5.